INDICE

Prologo	9
Sistemas digitales y algoritmos	
1.1. introducción	11
1.2. métodos de implementación	
1.2.1. interconexión de componentes estándar, sobre una tarjeta de	
circuito impreso	
1.2.2. personalización del diseño sobre una matriz de puertas o "gate	12
array"	
1.2.3. personalización del diseño sobre un dispositivo lógico	
programable o "PLD" (Programmable Logic Device)	
1.2.4. diseño de un circuito integrado a medida, basado en una	
biblioteca de células estándar (Estándar Cell Library)	
1.3. Definición de un sistema digital	14
1.3.1. descripción explicita	15
1.3.2. descripción implícita	4-7
1.4. materialización de algoritmos	17
1.5. Conclusiones	22
2. Componentes básicos	00
2.1. introducción	23
2.2. componentes combinacionales	27
2.2.1. puertas de transmisión, multiplexores y demultiplexores	27
2.2.2. Método de síntesis de funciones booleanas con multiplexores	32
2.2.3. Método de lógica dinámica	34
2.3. Redes lógicas programables PLA	38 43
2.4. Componentes secuenciales 2.5. memorias RAM	54
3. Esquemas de calculo	54
3.1. definición y objetivos	57
3.2. primera parte: enunciado del problema	31
3.3. segunda parte: relación de precedencia	58
3.4. tercera parte: materialización del esquema de calculo	59
3.4.1. materialización 1	60
3.4.2. materialización 2	61
3.5. cuarta parte: modificación de esquemas	63
3.6. quinta parte: unidad de proceso y unidad de control	65
3.7. sexta parte: cambios en la asignación de memoria	70
3.8. séptima parte: optimización	72
3.9. octava parte: recursos programables	73
3.10. resolución de un segundo ejemplo	77
3.11. metodología general de diseño	82
4. Circuitos segmentados o "Pipe Line"	
4.1. aplicación del paralelismo	87
4.2. técnica de segmentación o "Pipe Line"	90
5. Maquinas algorítmicas	
5.1. introducción	94
5.2. presentación de un primer ejemplo	
5.2.1. aplicación	96

5.2.2. análisis de los esquemas de calculo	97
5.2.3. programa de control	101
5.2.4. materialización del autómata de control	106
5.2.5. diseño de la unidad de proceso	108
5.3. método general	111
5.4. análisis de un segundo ejemplo	116
5.5. alternativas de trabajo	120
6. Unidad de proceso secuencializada	
6.1. introducción	125
6.2. principio general	
6.3. buses	126
6.4. arquitectura de 1 bus	129
6.5. arquitectura de 2 buses	134
6.6. Conclusiones	137
7. La unidad de control	
7.1. introducción	138
7.2. decodificador de ordenes	139
7.3. secuenciador	140
7.4. subrutinas	145
7.5. instrucción "Case"	147
7.6. Conclusiones	152
8. Algoritmos de interpretación	
8.1. metodología de diseño	153
8.2. ejemplo: diseño de un procesador	
8.3. características generales del procesador	157
8.2.2. repertorio de instrucciones	4=0
8.2.3. formato de las instrucciones	158
8.2.4. unidad de proceso	159
8.2.5. codificación de las instrucciones	160
8.3. primer algoritmo de interpretación	161
8.4. segundo algoritmo de interpretación	167
8.5. Conclusiones y comentarios	174
9. Metodología de diseño y comprobación de lso circuitos	475
integrados de aplicación especifica	175
9.1. introducción 9.2. metodologías de diseño	
9	170
9.2.1. circuitos predifundidos ("Gate Array") 9.2.2. celdas estándar ("Estándar Cells")	179
9.3.2. compiladores de silicio	180
9.3. verificación o test de ASICs	100
9.3.1. necesidad del test	181
9.3.2. maguina de test	101
9.4. reglas de diseño y de generación de los vectores de test	182
9.5. Conclusiones generales	187
9.6. comentario final	188
Apéndice A. El transistor Mos	100
A.1. Conclusiones y funcionamiento	189
Apéndice B. Modelo lógico del transistor Mos	100
B.1. definición	97

B.2. calculo de dimensiones	
Apéndice C. Diseño de máquinas secuenciales	
C.1. sistemas combinacionales y secuenciales	202
C.2. generalización del modelo de sistema secuencial	205
C.3. clasificación de los sistemas secuenciales	
C.3.1. sistemas secuenciales asíncronos	206
C.3.2 sistemas secuenciales síncronos	207
C.4 primer ejemplo	209
C.4. segundo ejemplo	214
C.6. variante del segundo ejemplo, usando flip-flop J-K	217
C.7. autómatas finitos. Tipos fundamentales	210
C.8. ejemplo de autómata de Moore	223
C.9. ejemplo de autómata de Mealy	226
C.10. otros métodos de diseño de sistemas secuenciales	229
C.10.1. método de los multiplexores	230
C.10.2. método del contador	232
C.10.3. método sin codificación de estados	236
C.10.4. método de la microprogramación con memoria PROM	238
Bibliografía	243
Índice alfabético	245