INDICE

Prologo	XIII
Primera parte: reconocimiento automático de formas	
Capitulo 1. Introducción al reconocimiento automático de formas	1
1.1. Principios de reconocimiento automático de formas	
1.2. Etapas del diseño de un sistema de reconocimiento automático de	
formas	7
1.3. Elementos de un sistema de reconocimiento automático de formas	9
1.4. Un segundo de un SRAF	10
Capitulo 2. Funciones discriminantes par el reconocimiento	
automático. El clasificador de la distancia Euclidea	15
2.1. Diferentes posibilidades en el diseño de funciones discriminantes	
2.2. reconocimiento automático mediante la distancia Euclídea	21
2.3. Distinción entre las fases de diseño y de operación del clasificador	
Euclídeo	28
2.3.1. Etapas del diseño del clasificador Euclídeo	
2.3.2.Fase operativa del clasificador	
2.4. Interpretación geométrica del reconocedor Euclídeo	34
2.5. Ejercicios numéricos para la obtención de reconocedores Euclídeos	38
Capitulo 3. Reconocimiento con aprendizaje supervisado en	
condiciones	47
3.1. Introducción	
3.2. Aprendizaje de funciones discriminantes por regiones	49
3.3. Aprendizaje de funciones discriminantes por distancia	65
3.4. Fundamentos de los algoritmos de aprendizaje en el reconocimiento	
automático de formas	73
Capitulo 4. Reconocimiento estadístico a priori. El clasificador	
Bayesiano	87
4.1. Justificación intuitiva de los clasificadores estadísticos	
4.3. Introducción general al clasificador estadístico a priori	95
4.4. Ejemplo de diseño de un reconocedor estadístico	100
4.5. Distancia de Mashalanobis	111
4.6. Discusión general del clasificador bayesiano con distribución normal	117
4.7. Estimación estadística de la matriz de covarianza y del vector media	121
4.8. Ejercicios numéricos de obtención de reconocedores estadísticos	124
4.9. Parámetros de riesgo asociados al reconocedor bayesiano	129
Capitulo 5. Reconocimiento con aprendizaje en condiciones	
estadísticas	135
5.1. Planteamiento general	
5.2. Algoritmos de aprendizaje de funciones discriminantes en	
condiciones estadísticas	138
5.3. Ejemplos numéricos de diseño de clasificadores estadísticos con	
aprendizaje	144
5.4. Modelo del proceso de Addison en la Universidad de Harvard	161
Capitulo 6. Algoritmos de agrupaciones de clases (Clustering)	
6.1. Introducción	165
6.2. Algoritmo de las distancias encadenadas (Chain-Map)	168
6.3. Algoritmo Max-Min	171

6.4. Algoritmo K-medias	176
6.5. Algoritmo Isodata	181
Capitulo 7. Selección de las características y procesado previos de	
datos	191
7.1. Introducción. Criterios para la selección de características	
7.2. Proceso de selección de las variables características	197
7.2.1. Selección de un subconjunto de características	198
7.3. Evaluación del rendimiento de un reconocedor automático	200
7.4. Transformaciones del vector de características	202
7.4.1. transformación de incorrelación o de diagonalización	204
7.4.2. Transformaciones discriminantes	214
Segunda parte. Visión artificial	
Capitulo 8. Introducción a la visión computacional	219
8.1. Introducción general	
8.2. Procesamiento previo de las imágenes	224
8.3. Análisis automático de imágenes	226
8.4. Configuración informática de un sistema de visión artificial	229
8.5. Etapas de un sistema de visión artificial (SVA)	234
Capitulo 9. Formación de imágenes digitales	
9.1. Planteamiento del problema	239
9.2. Relación entre las coordenadas del mundo físico y de la imagen	
digital	241
9.3. Calibrado de cámara	245
9.4. Transformaciones geométricas de imágenes	249
9.5. Fundamentos de la visión estereoscópica	253
Capitulo 10. Filtrado de imágenes digitales	
10.1. Introducción	257
10.2. Definiciones básicas. Introducción a la transformada de Fourier	259
10.3. Transformada de Fourier de imágenes digitales	271
10.4. Filtrado de imágenes digitales	276
10.5. Aplicaciones del filtrado de imágenes digitales	279
10.6. Introducción intuitiva al filtrado espacial	284
Capitulo 11. Procesamiento previos de imágenes digitales	
11.1. Introducción	289
11.2. Transformaciones basadas en el histograma	290
11.3. Ecualización del histograma	303
11.4. Filtrado frecuencial y espacial para el realce de imágenes digitales	306
Capitulo 12. Segmentación	
12.1. Introducción a la segmentación de imágenes	311
12.2. Umbralización basada en el histograma	313
12.3. Segmentación mediante agrupación de píxeles	325
12.4. Segmentación basada en el calculo de los bordes	327
Capitulo 13. Calculo de características discriminantes	021
13.1. Planteamiento general	341
13.2. Características discriminantes basadas en los momentos	343
13.2.1. Momentos invariantes a traslaciones	347
13.2.2. Momentos invariantes a traslaciones	348
13.2.3. Momentos invariantes a giros	351
13.3. Calculo de los momentos generales a partir del código cadena	353
r rolo. Calculo de los momentos generales a partir del codigo cadella	

13.4. Características discriminantes basadas en la transformada discreta	
de Fourier	365
13.4.1. Invarianzas a traslaciones	
13.4.2. Invarianzas a giros	370
13.4.3. 13.4.2. Invarianzas a giros homotecias	371
Capitulo 14. Descripción de proyectos de visión computacional	
14.1. Justificación del capitulo	373
14.2. Sistema de manipulador robótico de base fija y dotado de visión	
computacional	374
14.3. Vehiculo autónomo guiado por visión artificial	378
14.3.1. El concepto de realimentación visual	380
14.3.2. Descripción del prototipo de robot móvil	385
14.4. Reconocimiento automático de matriculas	
14.4.1. Segmentación de la matricula	390
14.4.2. Segmentación de los caracteres	396
14.4.3. Reconocimiento de los caracteres	
14.4. Conclusiones	398
Apéndice: Bibliografía comentada	401
Índice alfabético	429