INDICE

1. La Ecuación de Ondas para el Vacío	1
1.1. Introducción	1
1.2. Ecuaciones de Maxwell para el vacío	1
1.3. Densidad y flujo de energía	4
1.4. La ecuación de ondas	6
1.5. Apéndices	8
1.5.1. Ecuaciones de Maxwell en el sistema de unidades de Gauss	8
1.5.2. Operadores vectoriales en otras coordenadas	10
1.5.3. Transformación de los campos. Invariancia de las ecuaciones de	11
Maxwell	
1.7. Ejercicios y problemas	17
2. Ondas Electromagnéticas en el Vacío I: Ondas Escaleras	19
2.1. Introducción	19
2.2. Ondas escaleras planas	20
2.3. Ondas escaleras esféricas	23
2.4. Ondas escaleras monocromáticas: velocidad de fase	24
2.4.1. Monocromáticas planas	24
2.4.2. Monocromáticas no planas	27
2.5. Ondas cuasimonocromáticas	29
2.6. Coherencia	31
2.7. Efecto Doppler. Aberración estelar de la luz	33
2.8. El espectro de las ondas electromagnéticas	35
2.8.1. Consideraciones generales	35
2.8.2. Radiofrecuencias	36
2.8.3. Microondas	36
2.8.4. Infrarrojo	37
2.8.5. Luz visible	38
2.8.6. Ultravioleta	38
2.8.7. Rayos X	39
2.8.8. Rayos y	39
2.9. Apéndices	41
2.9.1. Solución de la ecuación de ondas planas	41
2.9.2. Ondas escalares gaussianas	42
2.10. Referencias	46
2.11. Ejercicio y problemas	46
3. Ondas Electromagnéticas en el Vacío II: Ondas Vectoriales	49
3.1. Introducción	49
3.2. Ondas vectoriales planas	49
3.3. Ondas vectoriales monocromáticas	53
3.4. Polarización	54
3.5. Polarización de ondas monocromáticas y planas	57
3.6. Transformación relativista de una onda plana monocromática	62
3.7. Algebra de estados de polarización	63
3.8. Apéndices	66
3.8.1. Vector de Poyting en representación compleja	66
3.8.2. Otras formas de representar la polarización	67
3.8.2.1. Semiejes y su orientación	67

3.8.2.2. Parámetros de Stokes. Esfera de Poincaré	68
3.8.3. Dispositivos de polarización. Representación matricial	70
3.8.4. Lámina birrefrigente	73
3.8.5. Estudio experimental de la polarización de la luz	77
3.9. Referencias	77
3.10. Ejercicios y problemas	77
4. Radiación de Ondas Electromagnéticas	81
7.1. Introducción	81
4.2. Potenciales retardados	82
4.3. Sistema de cargos lejano. Radiación bipolar eléctrica	85
4.3.1. Primer caso, x arbitraria	86
4.3.2. Segundo caso, 1 < <x (zona="" <<="" de="" ondas)<="" r="" td=""><td>89</td></x>	89
4.4. Radiación multipolar	92
4.5. Sistemas simple: una cargo oscilante	94
4.6. Espectro de emisión del oscilador amortiguado	98
4.7. Radiación emitida por una carga relativista	103
4.8. Radiación de frenado. Radiación de sincrotrón	105
4.9. radiación de Cherenkov	107
4.10. Apéndices	108
4.10.1. Obtención de las ecuaciones (4-3)	108
4.10.2. Obtención de las fórmulas (4-23)	109
4.10.3. Obtención de las formulas (4-30)	109
4.10.4. Espectro de frecuencias de la relación sincrotrón	110
4.11. Referencias	111
4.12. Ejercicios y problemas	111
5. Absorción y Esparcimiento de Ondas Electromagnéticos	113
5.1. Introducción	113
5.2. Definiciones de parámetros característicos	115
5.3. Esparcimiento por una carga libre	117
5.3.1. Sección eficaz de Thomson	117
5.3.2. Consideraciones sobre la polarización	120
5.4. Sección eficaz de una carga ligada (oscilador de Lorentz)	123
5.4.1. Oscilador de Lorentz	123
5.4.2. Sección eficaz de extinción	124
5.4.3. Sección eficaz de esparcimiento	125
5.5. Absorción y esparcimiento en un medio material	128
5.5.1. Medios ópticamente densos	128
5.5.2. Reflexión y refracción en la superficie que separa dos medios	129
5.5.2. Esparcimiento incoherente	130
5.6. El color azul del cielo	132
5.7. Referencias	134
5.8. Ejercicios y problemas	134
6. El Campo Electromagnético en los Medios Materiales	135
6.1. Introducción	135
6.2. Ecuaciones macroscópicas de Maxwell	136
6.3. Relaciones de constitución. Medio no dispersivos	138
6.3.1. Capos estáticos	139
6.3.2.Frecuencias bajas	140
	,

6.4. Medios dispersivos	141
6.5. Propiedades fundamentales de la permitividad dieléctrica	145
6.6. Implicaciones físicas de la dispersión	147
6.7. Apéndices	148
6.7.1. Otras formas de introducir la permitividad compleja	148
6.7.2. Relaciones entre la permitividad y la conductividad	148
6.7.2.1. Justificación de la fórmula (6-25)	148
6.7.2.2. Justificación de la fórmula (6-28)	149
6.7.3. Demostración de las relaciones Kramers – Kronig	150
6.8. Referencias	151
6.9. Ejercicios y problemas	151
7. Propagación en Medios Dispersivos y Homogéneos	153
7.1. Introducción	153
7.2. La energía electromagnético en los medios dispersivos	153
7.3. Ecuación de ondas	156
7.4. Índice de refracción complejo	158
7.5. Onda monocromática plana	159
7.6. Propagación de ondas no monocromáticas. Velocidad de grupo	162
7.7. Apéndices	166
7.7.1. Energía electromagnética en medios no dispersivos	166
7.7.2. Disipación de energía en medios dispersivos	168
7.8. Referencias	168
7.9. Ejercicios y problemas	169
8. Modelo Microscópico del Índice de Refracción	170
8.1. Introducción	170
8.2. Gas a baja presión	172
8.3. Medios densos no conductores	174
8.4. Medios conductores	178
8.5. Apéndices	180
8.5.1. Oscilación de plasma en un gas electrónico	180
8.5.2. Cálculo del campo local	182
8.6. Referencias	184
8.7. Ejercicios y problemas	184
9. Superficie de Discontinuidad: Dieléctrico – Mental	185
9.1. Introducción	185
9.2. Condiciones en la frontera	186
9.3. Leyes de la reflexión y de la refracción	189
9.4. Relaciones entre amplitudes	192
9.5. Relaciones energéticas	198
9.6. Determinación experimental de n y k	200
9.7. Apéndices	204
9.7.1. Obtención de las fórmulas (9-26)	204
9.7.2. Factores de reflexión y de transmisión para medios magnéticos	206
9.7.3. Fórmulas para las constantes ópticas	206
9.8. Referencias	207
9.9. Ejercicios y problemas	208
10. Superficies y Discontinuidad: Dieléctrico – Dieléctrico	209
10.1. Las leyes de Snell	209

10.2. Relaciones entre amplitudes: fórmulas de Fresnel	211
10.3. Reflectancia y transmitancia	215
10.4. Ley de Brewster y cambios de polarización	218
10.5. Reflexión total	211
10.6. Apéndices	226
10.6.1. Relaciones de Stokes entre los factores de reflexión y de	226
transmisión	
10.7. Referencias	228
10.8. Ejercicios y problemas	228
11. Aproximación Geométrica. Óptica de Rayos	229
11.1. Introducción	229
11.2. Onda localmente plana	230
11.3. Ecuaciones fundamentales	233
11.4. El principio de Fermat	235
11.5. Las leyes de Snell y el principio de Fermat	237
11.6. Los límites de la óptica geométrica	239
11.7. Apéndices	243
11.7.1. Espejismos	243
11.7.2. Ecuación de eikonal a partir de la ecuación de ondas	243
11.7.3. Otras formas de la ecuación de los rayos	245
11.7.4. La ecuación de los rayos a partir del principio de Fermat	245
11.8. Referencias	246
11.9. Ejercicios y problemas	246
Símbolos usados en el texto	249
Índice de materiales	253