INDICE

Presentación	VII
Notaciones	XV
Capitulo 1. Introducción al estudio de la resistencia de materiales	
1.1. objeto y finalidad de la resistencia de materiales	1
1.2. concepto de sólido elástico	3
1.3. Modelo teórico de sólido utilizado en resistencia de materiales.	
Prisma mecánico	5
1.4. equilibrio estático y equilibrio elástico	8
1.5. estado tensional de un prisma mecánico	9
1.6. estado de deformación de un prisma mecánico	13
1.7. principios generales de la resistencia de materiales	16
1.8. relaciones entre los estados tensional y de deformaciones	20
1.9. esfuerzos normal y cortante y momentos de flexión y de torsión: sus	
relaciones con las componentes de la matriz de tensiones	25
1.10. tipos de solicitaciones exteriores sobre un prisma mecánico	28
1.11. Reacciones de lasa ligaduras. Tipos de apoyos	29
1.12. sistemas isostáticos e híperestáticos	31
1.13. Noción de coeficiente de seguridad. Tensión admisible	32
1.14. Criterios de resistencia. Tensión equivalente	37
1.15. Teoría del potencial interno. Teoremas energéticos	38
Ejercicios	41
Capitulo 2. Tracción y comprensión	
2.1. esfuerzo no rmal y estado tensional de un prisma mecánico sometido	69
tracción o compresión monoaxial	70
2.2. estado de deformaciones por tracción o comprensión monoaxial	76
2.3. Tensiones y deformaciones producidas en un prisma recto por su	77
propio peso. Concepto de sólido de igual resistencia	77
2.4. expresión del potencial interno de un prisma mecánico sometido a	80
tracción o compresión monoaxial	81
2.5. tracción o compresión monoaxial híperestática	01
2.6. tracción o compresión monoaxial producida por variaciones térmicas o defectos de montaje	90
2.7. equilibrio de hilos y cables	94
2.8. arcos funcionales	99
2.9. Tracción o compresión biaxial. Envolventes de revolución de	33
pequeño espesor	100
2.10. tracción o compresión triaxial	107
Eiercicios	110
Capitulo 3. Cortadura	
3.1. Cortadura pura. Teoría elemental de la cortadura	139
3.2. tensión cortante pura	141
3.3. deformaciones producidas por cortadura pura	142
3.4. calculo de uniones remachadas y atornilladas	145
3.5. calculo de uniones soladas	154
Ejercicios	160
Capitulo 4. Teoría general de la flexión. Análisis de tensiones	
4.1. Introducción	180

4.2. Ley de Navier	182
4.3. Flexión simple. Convenio de signos para esfuerzos cortantes y	
momentos flectores	188
4.4. determinación de momentos flectores	190
4.5. determinación de esfuerzos cortantes	196
4.6. relaciones entre el esfuerzo cortante, el momento flector y la carga	200
4.7. Tensiones producidas en la flexión simple por el esfuerzo cortante.	
Teorema de Colignon	202
4.8. tensiones principales en flexión simple	210
4.9. vigas armadas	213
4.10. Vigas compuestas	220
4.11. estudio de las tensiones cortantes en el caso de perfiles delgados	
sometidos a flexión simples	225
4.12. Secciones de perfiles delgados con eje principal vertical que no lo	
es de simetría. Centro de esfuerzos cortantes	228
Ejercicios	234
Capitulo 5. Teoría general de la flexión. Análisis de deformaciones	
5.1. introducción	262
5.2. Método de la doble integración para la determinación de la	
deformación de vigas rectas sometidas a flexión simple. Ecuación de la	263
línea elástica	
5.3. ecuación universal de la deformación de una viga de rigidez	
constante	269
5.4. Teoremas de Mohr	274
5.5. teoremas de la viga conjugada	277
5.6. Expresión del potencial interno de un prisma mecánico sometido a	000
flexión simple. Concepto de sección reducida	280
5.7. deformaciones por esfuerzos constantes	284
5.8. método de Mohr para el calculo de deformaciones	287
5.9. método de multiplicación de los gráficos	290
5.10. calculo de desplazamientos en vigas sometidas a flexión simple	204
mediante uso de series de Fourier	291
5.11. deformaciones de una viga por efecto de la temperatura	295
5.12. flexión simple de vigas producida por impacto	297
5.13. vigas de sección variables sometidas a flexión simple	298
5.14. resortes de flexión	305
Ejercicios Capitulo 6. Flexión desviada y flexión compuesta	308
	220
6.1. introducción 6.2. Flexión desviada en el dominio elástico. Análisis de tensiones	338
6.3. Expresión del potencial interno de un prisma mecánico sometido a	339
flexión desviada. Análisis de deformaciones	344
	346
6.4. relación entre la traza del plano de carga y le je neutro 6.5. flexión compuesta	348
	349
6.6. Tracción o comprensión excéntrica. Centro de presiones 6.7. núcleo central de la sección	354
6.8. caso de materiales sin resistencia al tracción	358
6.9. flexión de piezas curvas	360
Eiercicios	365
1 1 15 415 415 415 45 1	.,,,,,,,

Capitulo 7. Flexión híperestática	
7.1. Introducción	399
7.2. métodos de calculo de vigas híperestáticas de un solo tramo	401
7.3. viga empotrada en sus extremos	407
7.4. viga empotrada por un extremo y apoyada en el otro	408
7.5. vigas continuas	410
7.6. Sistemas híperestáticos. Grado de hiperestaticidad de un sistema	414
7.7. método de las fuerzas para el calculo de sistemas híperestáticos	419
7.8. Aplicación del teorema de Castigliano para la resolución de sistemas híperestáticos.	422
7.9. Construcción de los diagramas de momentos flectores, esfuerzos	
cortantes y normales en sistemas híperestáticos.	425
7.10. Calculo de deformaciones y desplazamientos en los sistemas	
híperestáticos.	427
Ejercicios	430
Capitulo 8. Flexión lateral. Pandeo	
8.1. Introducción	480
8.2. Estabilidad del equilibrio elástico. Noción de carga critica	481
8.3. Pandeo de barras rectas de sección constantes sometidas a	
comprensión. Formula de Euler	483
8.4. comprensión excéntrica de barras esbeltas	486
8.5. grandes desplazamientos en barras esbeltas sometidas a	
comprensión	489
8.6. Valor de la fuerza critica el tipo de sustentación de la barra. Longitud	
de pandeo	497
8.7. limites de aplicación de la formula de Euler	500
8.8. formula empírica de Tetmajer para la determinaron de las tensiones	
criticas en columnas intermedias	502
8.9. método de los coeficientes @ para el calculo de barras comprimidas	504
8.10. flexión compuesta en vigas esbeltas	508
8.11. pandeo de columnas con empotramientos elásticos en los	
extremos sin desplazamiento transversal	510
8.12. estabilidad de anillos sometidos a presión exterior uniforme	514
Ejercicios	517
Capitulo 9. Teoría de la torsión	
9.1. Introducción	550
9.2. teoría elemental de la torsión en prismas de sección circular	552
9.3. Determinación de momentos torsores. Calculo de ejes de trasmisión de potencia	556
9.4. expresión del potencial interno de un prisma mecánico sometido a	550
torsión para	564
9.5. torsión en prisma mecánico rectos de sección no circular	565
9.6. estudio experimental de la torsión por la analogía de la membrana	574
9.7. torsión de perfiles delgados	578
Ejercicios	586
Capitulo 10. Solicitaciones combinadas	
10.1. expresión del potencial interno de un prisma mecánico sometido a	613
una solicitación exterior arbitraria	
10.2. método de Mohr para el calculo de desplazamiento en el caso	616

general de una solicitación arbitraria	
10.3. flexión y torsión combinadas	618
10.4. Torsión y cortadura. Resortes de torsión	621
10.5. formulas de Bresse	623
Ejercicios	627
Apéndice 1. Formulas generales de la norma básica MV- 103 para el	
calculo de uniones soldadas planas	649
Apéndice 2. Tablas de perfiles laminados	655
Bibliografía	680
Índice analítico	681