INDICE

Prefacio	XXI
Parte I. Cinemática de mecanismos	1
Capitulo 1. Introducción	
1.0. Objetivo	
1.1.Cinemática y cinética	3
1.2. Mecanismos y maquinas	
1.3. breve historia de la cinemática	4
1.4. El proceso de diseño	5
Diseño, invención y creatividad	
Identificación de la necesidad	7
Investigación de fondo	8
Planteamiento de la meta	
Especificaciones de tarea	9
Ideación e invención	10
Análisis	11
Selección	
Diseño detallado	12
Elaboración de prototipos y pruebas	
Producción	14
1.5. Soluciones múltiples	15
1.6. Factores humanos en los ingeniería	
1.7. El reporte de ingeniería	16
1.8. Unidades de medida	17
1.9. Lo que viene	
1.10. Referencias	21
1.11. Bibliografía	
Capitulo 2. Fundamentos de cinemática	00
2.0. Introducción	23
2.1. grados de libertad (GDL)	25
2.2. Tipos de movimiento	25
2.3. Eslabones, juntas y cadenas cinemáticas	26
2.4. Determinación del grado de libertad	30
2.5. Mecanismos y estructuras	34
2.6. Síntesis numérica	35
2.7. Paradojas	39
2.8. Isómeros	40
2.9. Transformación de eslabonamientos	42
2.10. Movimiento intermitente	45
2.11. Inversión	47
2.12. La condición de Grashof	44
2.13. Eslabonamiento de mas de cuatro barras	54
2.14. Los resortes como eslabones	
2.15. Consideraciones practicas	56 62
2.16. Referencias	
2.17. Problemas Capitulo 3. Síntesis de eslabomanientos	63
3.0. Introducción	66
լ Ն.Ս ՈւևՍԱԱՆԱՄԻ	66

3.1. Síntesis	
3.2. Generación de función, trayectoria y movimiento	69
3.3. Condiciones limite	71
3.4. Síntesis bidimensional	
Síntesis de dos posiciones	74
Síntesis de tres posiciones con pivotes móviles especificados	79
Síntesis de tres posiciones con pivotes móviles alternos	82
Síntesis de tres posiciones con pivotes fijos especificados	84
Síntesis posicionales para mas de tres posiciones	
3.5. Mecanismos de retorno rápido	89
Eslabonamiento de retorno rápido de cuatro eslabones	90
Eslabonamiento de retorno rápido de seis eslabones	92
3.6. Curvas de acoplador	95
3.7. Cognados	103
3.8. Mecanismos para movimiento rectilíneo	107
3.9. Mecanismos de detenimiento (o paro)	108
Eslabonamiento con un solo pareo	110
Eslabonamientos con doble paro o detenimiento	112
3.10. Referencias	114
3.11. Bibliografía	117
3.12. Problemas	115
3.13. Proyectos	118
Capitulo 4. Análisis de posiciones	110
4.0. Introducción	121
4.1. Sistemas coordenadas	123
4.2. Posición y desplazamiento	120
Posición	124
Desplazamiento	
4.3. Traslación, rotación y movimiento complejo	126
Traslación	0
Rotación	127
Movimiento complejo	
Teoremas	128
4.4. Los números complejos como vectores	129
4.5. Análisis deposición en eslabonamientos	
Análisis grafico	131
La ecuación de lazo vectorial para un eslabonamiento de cuatro barras	
4.6. La solución de posición en el eslabonamiento de cuatro barras	
manivela-corredera	137
4.7. Una solución de posición con manivela-corredera invertida	139
4.8. Eslabonamiento con mas de cuatro barras	
El eslabonamiento de cinco barras con engrane	141
Eslabonamiento de seis barras	144
4.9. Posición de un punto cualquiera en un eslabonamiento	145
4.10. Ángulos de trasmisión	147
Valores extremos del Angulo de transmisión	148
4.11. Posiciones de agotamiento	149
4.12. Problemas	151
Capitulo 5. Síntesis de eslabonamiento	157

5.0. Introducción	
5.1. Tipos de síntesis cinemática	
5.2. Puntos o posiciones de precisión	
5.3. Generación de movimiento de dos posiciones por síntesis analítica	
5.4. Comparación por ecuaciones simultaneas	
5.5. Solución por ecuaciones simultáneas	
5.6. El programa	173
5.7. Generación de movimiento de tres posiciones por síntesis analítica	174
5.8. Comparación de las síntesis analítica y grafica para tres posiciones	180
5.9. Síntesis para una localización especifica de pivote fijo	185
5.10. Círculos de punto central y de punto circunferencial	192
5.11. Síntesis analítica de cuatro y cinco posiciones	196
5.12. Síntesis analítica de un generador de trayectoria con	
temporización prescrita	197
5.13. Síntesis analítica de un generador de función para un	
eslabonamiento de cuatro barras	198
5.14. Referencias	201
5.15. Problemas	202
Capitulo 6. Análisis de velocidad	
6.0. Introducción	206
6.1. Definición de velocidad	
6.2. Análisis grafico de la velocidad	209
6.3. Centros instantáneas de velocidad	214
6.4. Análisis de velocidad con centros instantáneas	222
Relación de velocidad angular	224
Ventaja mecánica	
Utilización de los centros instantáneos en el diseño de eslabonamientos	228
6.5. Céntrodos (o centródicas)	231
Un eslabonamiento "sin eslabones"	234
Cúspides (o picos)	235
6.6. Velocidad de deslizamiento 6.7. Soluciones analíticas para análisis de velocidad	
El eslabonamiento articulado de cuatro barras	240
Eslabonamiento de cuatro barras de manivela-corredera	243
Eslabonamiento de cuatro barras de manivela-corredera invertida	
6.8. Análisis de velocidad del eslabonamiento de cinco barras con	
engranaje	247
6.9. Velocidad de un punto cualquiera en un eslabonamiento	248
6.10. Referencias	
6.11. Problemas	250
Capitulo 7. Análisis de aceleración	
7.0. Introducción	258
7.1.Definición de aceleración	
7.2. Análisis grafico de la aceleración	262
7.3. Soluciones analíticas para el análisis de aceleración	
El eslabonamiento de cuatro barras con juntas de pasador	267
El eslabonamiento de cuatro barras de manivela-corredera	
Aceleración de Coriolis	272
El eslabonamiento de cuatro barras de manivela-corredera invertido	275

7.4. Análisis de aceleración del eslabonamiento de cinco barras con	
engranaje	279
	280
7.5. Aceleración de un punto cualquiera en un eslabonamiento7.6. Tolerancia humana a la aceleración	
7.7. Rapidez de aceleración (sacudido) 7.8. Eslabonamiento de N barras	
7.9. Referencias	288
7.10. Problemas	200
Capitulo 8. Programas de computadora	
8.0. Introducción	294
8.1. Requisitos de hardware (equipo computacional)	
8.2. Como correr los programas	296
8.3. Operación de un programa	
1- Ingresos de datos (Input Data)	299
2- Despliegue de datos (Display Data)	304
3- Calculate	303
4- Print Results	305
5- Plot Results	309
6- Animate	315
7- Help	
8.4. Diferencias en el Fivebar	317
Datos de entrada del Fivebar	318
Otros elementos del menú principal del Fivebar	
8.5. Diferencias en el Sixbar	321
Datos de entrada del Sixbar	
Otros elementos del menú principal del Sixbar	323
8.6. Ecuaciones utilizadas en los programas	
8.7. Notas finales	324
Capitulo 9. Diseño de Levas	
9.0. Introducción	327
9.1. Terminología de un mecanismo de leva	328
Tipo de movimiento de seguidor	330
Tipo de cierra de junta	331
Tipo de seguidor	
Tipo de leva	333
Tipo de restricciones de movimiento	
Tipo de programa de movimiento	334
9.2. Los diagramas S V A J	335
9.3. Diseño de una leva con dos detenimientos-selección de las	
funciones S V A J	336
Ley fundamental del diseño de levas	340
Movimiento armónico simple (MAS)	341
Desplazamiento cicloidal	344
Funciones combinadas	348
9.4. Diseño de una leva con un detenimiento-selección de las funciones S V A J	
Aplicaciones de polinomios en el caso de doble detenimiento	367
Aplicaciones de polinomios en el caso de un solo detenimiento	372
9.6. Movimiento de ruta critica (CPM)	375

Polinomios utilizados para el movimiento en trayectoria critica	377
Funciones de la familia de armonías de medio periodo	385
9.7. Dimensionado de la leva-anguilo de presión y radio de curvatura	
Angulo de presión-seguidores de rodillos	391
Elección de un radio de circulo primario	395
Momento de volteo-seguidor de cara plana	396
Radio de curvatura- seguidor de rodillo	397
Radio de curvatura- seguidor de cara plana	403
9.8. Consideraciones para la fabricación de levas	407
Generación geométrica	
Maquinado manual o NC según coordenadas de levas (corte con	408
empuje)	
Control numérico continuo con interpolación lineal	409
Control numérico continuo con interpolación circular	412
Duplicación (o reproducción) analógica	413
Funcionamiento real de una leva comparado con el funcionamiento	
teórico	415
9.9. Consideraciones prácticas de diseño	418
¿Un seguidor traslatorio u oscilatorio?	
¿Cierre de fuerza o de forma?	419
¿Leva radial o axial?	
¿Seguidor de rodillo o de cara plana?	420
¿Usar detenciones o no?	
¿Rectificar o no?	421
¿Lubricar o no?	
9.10. El programa DYNACAM	422
1- Input Data	423
2- Display Data	425
3- Compute S V A J	426
4- Print Results	428
5- Plot Results	400
6- Compute Pressure Angle	429
7- Compute Radius of Curvature	400
8- Compute Dynamics Force and Torque	430
9- Draw Cam Profile	424
10- Help	431
9.11. Referencias	422
9.12. Problemas	432
9.13. Proyectos Capitulo 10. Transmisiones de engranes o engranajes	433
10.0. Introducción	437
10.1. Cilindros rodantes en contacto	438
10.2. Ley fundamental del engranaje	440
	441
El perfil de involuta para dientes de engrane Cambio de la distancia entre centros	443
	444
Angulo de presión	444
Juego 10.3 Nomenclatura de los engranos	-
10.3. Nomenclatura de los engranes	446 449
10.4. Interferencia y rebaje entre dientes	1449

10.5. Engranes y trasmisiones de banda y cadena	
Engranes rectos, helicoidales y espirales	450
Mecanismos de gusano (o sinfín)	
Mecanismos de piñón y cremallera	
Engranes cónicos o hipoidales	453
Engrane no circulares	
Transmisiones de banda y de cadena	456
10.6. Trenes de engranes de tipo simple	458
10.7. Trenes de engranes de tipo compuesto	459
Diseño de trenes de tipo compuesto	460
Diseño de trenes de tipo compuesto revertidos	461
10.8. Trenes en engranes planetarios (o epicíclicos)	464
El método tabular	467
El método de formula	472
10.9. Transmisiones especiales	474
10.10. Bibliografía	
1011. Problemas	476
Parte II Dinámica de maquinaria	483
Capitulo 11. Principios de dinámica	
11.0. Introducción	485
11.1. Leyes de movimiento de Newton	
11.2. Modelos dinámicos	486
11.3. Masa	487
11.4. Momento estático de masa (primer momento másico) y centro de	
gravedad	488
11.5. Momento de inercia de masa (segundo mentó másico)	490
11.6. Teorema de los ejes paralelaos (o de transferencia)	492
11.7. Radio de giro (o de inercia)	493
11.8. Centro de percusión	494
11.9. Métodos de resolución	496
11.10. El principio de d'Alembert	497
11.11. Métodos de energía -Trabajo virtual	498
11.12. Referencias	
11.13. Problemas	502
Capitulo 12. Análisis de fuerzas dinámicas	
12.0. Introducción	504
12.1. Método de solución newtoniana	
12.2. Un solo eslabón en rotación pura	505
12.3. Análisis de fuerzas de un eslabonamiento de tres barras de	
manivela y corredera	509
12.4. Análisis de fuerzas de un eslabonamiento de cuatro barras	515
12.5. Análisis de fuerzas de un eslabonamiento de manivela-corredera	
de cuatro barras	522
12.6. Análisis de fuerzas de la cadena de manivela-corredera invertida	524
12.7. Análisis de fuerzas de eslabonamientos con masa de cuatro barras	527
12.8. Fuerzas y torque de sacudiendo o trepidación	528
12.9. El programa DYNAFOUR	529
12.10. Análisis de fuerzas de eslabonamiento por método de energía	535
12.11. Control del torque de entrada-volantes	537

12.12. Consideraciones prácticas	545
12.13. Problemas	547
12.14. Proyectos	552
Capitulo 13. Equilibrio	
13.0. Introducción	557
13.1. Equilibrio (o balance) estático	558
13.2. Equilibrio dinámico	562
13.3. Balance estático de un eslabonamiento de cuatro barras	567
13.4. Efecto del equilibramiento sobre el torque de entrada	
13.5. Equilibramiento con el programa DYNAFOPUR	571
13.6. Medición y corrección del desequilibrio	576
13.7. Bibliografía	
13.8. Problemas	578
Capitulo 14. Dinámica de los motores de combustión interna	
14.0. Introducción	581
14.1. Diseño del motor	583
14.2. Cinemática del mecanismo de manivela-corredera	589
14.3. Fuerza y torque debidos a la expansión del gas	597
14.4. Masas equivalentes	600
14.5. Fuerza de inercia y de sacudimiento	604
14.6. Torques de inercia y de sacudimiento	607
14.7. Torque total del motor	
14.8. Volantes (o ruedas volantes)	609
14.9. Fuerzas de pasador en un motor de un cilindro	613
14.10. Equilibrado del motor de un cilindro	617
14.11. Trasnacionales y relaciones de diseño	621
Relación biela/manivela	
Relación diámetro/carrera (o calibre/carrera)	622
Materiales	623
14.12. Bibliografía	
14.13. Problemas	624
14.14. Proyectos	627
Capitulo 15. Motores multicilíndricos	
15.0. Introducción	628
15.1. Diseños de motores multicilíndricos	630
15.2. Diagrama de fase de manivela	633
15.3. Fuerzas de sacudimiento en los motores con cilíndricos en línea	636
15.4. Torque de inercia en los nombres de cilindros en línea	639
15.5. Momento no rotatorio de sacudimiento en motores en línea	640
15.6. Encendido o ignición uniforme o regular	643
Motor con ciclo de dos tiempos	644
Motor con ciclo de cuatro tiempos	647
15.7. Configuraciones de motores en "V"	656
15.8. Configuraciones de motor con cilindro opuestos	667
15.9. Equilibramiento de motores multicilíndricos	668
15.10. Bibliografía	100
15.11. Problemas	674
15.12. Proyectos	675
Capitulo 16. Programa Engine	677

16.0. Introducción	
16.1. Operación del programa	679
1- Ingreso de datos (Input Data)	680
2- Despliegue de datos (Data Display)	681
3- Calculo (Calculate)	682
	683
4- Impresión (Prinf), y 5- Graficación (Plof)	003
5- Equilibrado de manivela (o codo de cigüeñal) 6- Ensamblado del motor	684
	688
7- Cálculos de volante	
8- Ayuda (Help)	690
16.2. Ecuaciones utilizadas en el programa	690
16.3. Algunas preguntas comunes	691
Capitulo 17. Dinámica de las levas	
17.0. Introducción	693
17.1. Modelos dinámicas de parámetros concentradas o agrupados	
Constante de fuerza de un resorte	
Amortiguación	695
17.2. Sistemas equivalentes	697
Combinación de amortiguadores	700
Combinación de resortes	
Combinación de masas	701
Relaciones de palanca y de engranaje	702
17.3. Análisis dinámico del mecanismo de leva y seguidor con cierre de	
fuerza	709
Respuestas sin amortiguamiento	
Respuestas amortiguada	712
17.4. Resonancia	719
17.5. Análisis dinámico inverso de un mecanismo de leva con cierre de	
fuerza	722
17.6. Análisis dinámico inverso de un mecanismo de leva con cierre de	
forma	726
17.7. torque del eje de levas	730
17.8. Levas polydyne (o polidínicas)	733
17.9. Medición de fuerzas dinámicas	737
17.10. Consideraciones prácticas	
17.11. Referencias	738
17.12.Bibliografía	
17.13. Problemas	739
Capitulo 18. Diseño de ingeniería	
18.0. Introducción	742
18.1. Estudio de un caso de diseño	743
18.2. Conclusión	
18.3. Referencias	749
Apéndices	1 10
A. Propiedades de materiales	751
B. Propiedades geométricas	753
C. Datos de resortes	755
D. Atlas de curvas de acoplador para eslabonamientos de cinco	1.00
barras con engranaje	759

E. Respuestas a problemas seleccionados	765
Instrucciones para el uso del disco de programa	777
Índice	779