Contents | Sym | bol | s | |-----|-----|---| |-----|-----|---| | BAS | ASIC CONSIDERATIONS | | |--------------------|---|--| | Intro | oduction | 3 | | 1.1 | Need for Control of Seepage | 3 | | 1.2 | | 5 | | 1.3 | Examples of Failures Caused by Uncontrolled | _ | | | | 11 | | | | 17 | | | | 21 | | | | 23 | | | | 24 | | Refe | erences | 24 | | Pern | neability | 26 | | 2.1 | General Considerations | 26 | | 2.2 | Coefficient of Permeability | 32 | | 2.3 | Factors Influencing Permeability | 34 | | 2.4 | Indirect Methods for Determining Permeability | 48 | | 2.5 | J | 49 | | 2.6 | | | | | Changing the Head in Holes | 53 | | | | 76 | | 2.8 | | | | | | 78 | | Refe | rences | 84 | | Seepage Principles | | | | 3.1 | Value of Seepage Theory | 86
86 | | 3.2 | | 87 | | 3.3 | Flow Nets | 90 | | | 1.1
1.2
1.3
1.4
1.5
1.6
1.7
Refe
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
Refe
Seep
3.1
3.2 | Saturation and Seepage Forces 1.4 How Can Seepage Failures Be Prevented? 1.5 Degree of Conservatism Needed 1.6 Scope of This Work 1.7 Conclusions References Permeability 2.1 General Considerations 2.2 Coefficient of Permeability 2.3 Factors Influencing Permeability 2.4 Indirect Methods for Determining Permeability 2.5 Laboratory Methods for Determining Permeability 2.6 Field Methods That Depend on Pumping or Changing the Head in Holes 2.7 Field Methods That Depend on Seepage Velocities 2.8 Field Methods That Depend on Observation of Spreading or Receding Groundwater Mounds References Seepage Principles 3.1 Value of Seepage Theory 3.2 Darcy's Law | ## xii CONTENTS | | 3.4
3.5
3.6
3.7
Refe | Seepage Quantities Seepage Forces and Uplift Pressures Moving Saturation Lines Semiturbulent and Turbulent Flowerences | 107
110
127
139
145 | |---------|--|---|---| | Four | Flow | Net Construction | 148 | | | 4.4
4.5
4.6
Supp | Introduction General Suggestions Types of Flow Net Confined Flow Systems (Phreatic Line Known) Unconfined Flow Systems (Phreatic Line Unknown) Composite Sections with Phreatic Line Unknown plemental Reading rences | 148
149
150
151
159
163
172
172 | | PART II | APPL | ICATIONS | 173 | | Five | Filter | and Drain Design . | 175 | | | 5.3
5.4
5.5
5.6
5.7
5.8 | Basic Requirements of Filters and Drains Prevention of Piping Examples of Filter Designs to Prevent Piping Permeability Requirements of Filters and Drains Examples of the Use of Darcy's Law in the Design of Drains Examples of the Use of Flow Nets in the Design of Drains Use of Synthetic Filter Fabrics in Drains Specifications for Filters and Drains rences | 175
178
186
190
197
201
207
216
218 | | Six | Seepa | age Control in Earth Dams and Levees | 221 | | | 6.2 | General Seepage Control by Methods That Reduce | 221 | | | | Quantity Saanaga Control by Drainaga Mathada | 228 | | | 6.4 | Seepage Control by Drainage Methods
Protecting From Earthquakes and Earth
Movements | 246265 | | | | Nonsteady Seepage in Dams and Levees | 200
271 | | | | Rehabilitation of Water-Endangered Dams | 274 | | | | Summary | 277 | | | | CONTENTS | xiii | |-----------|--|--|---| | | | lemental Reading
rences | 278
278 | | Seven | Foundations | | 281 | | | 7.2 | Construction Dewatering Foundation Improvement by Drainage rences | 281
306
329 | | Eight | Slope | Stabilization with Drainage | 332 | | | 8.2 | General Considerations Influence of Important Conditions on Slope Stability Drainage Methods for Stabilizing Slopes | 332
347
361 | | | | Influence of Soil and Geological Details on | 375 | | | 8.5 | Drainage
General Conclusions
rences | 377
378 | | Nine | Road | s, Airfields, and Other Surface Facilities | 381 | | | 9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8 | Importance of Protecting Paved Areas from Water Physical Factors Compounding the Problem of Draining Pavements and Other Surface Facilities The Basic Solutions Roadbed Drainage Airfield Drainage Miscellaneous Rehabilitation of Water-Damaged Pavements Agricultural Lands rences | 381
385
390
394
414
417
421
423
430 | | Ten | | tural Drainage | 433 | | | 10.2
10.3
10.4
10.5
10.6
10.7 | • | 433
435
447
465
475
487
491
508 | | Author In | ndex | | 511 | | Subject | Index | | 515 |