INDICE

Prefacio	XIII
Capítulo 1. Introducción	1
1.1. Antecedentes históricos	2
1.2. Origen y desarrollo de la robótica	5
1.3. Definición y clasificación del robot	8
1.3.1. Definición del robot industrial	9
1.3.2. Clasificación del robot industrial	
1.3.3. Robots de servicio y teleoperados	11
1.4. Bibliografía	14
Capítulo 2. Morfología del robot	15
2.1. Estructura mecánica de un robot	16
2.2. Transmisiones y reductores	19
2.2.1. Transmisiones	20
2.2.2. Reductores	21
2.23. Accionamiento directo	24
2.3. Actuadores	25
2.3.1. Actuadores neumáticos	26
2.3.2. Actuadores hidráulicos	28
2.3.3. Actuadores eléctricos	29
2.4. Sensores internos	36
2.4.1. Sensores de posición	37
2.4.2. Sensores de velocidad	42
2.4.3. Sensores de presencia	43
2.5. Elementos terminales	44
2.6. Bibliografía	46
Capítulo 3. Herramientas matemáticas para la localización espacial	49
3.1. Representación de la posición	
3.1.1. Sistema de cartesiano de referencia	50
3.1.2. Coordenadas cartesianas	
3.1.3. Coordenadas polares y cilíndricas	51
3.1.4. Coordenadas esféricas	
3.2. Representación de la orientación	52
3.2.1. Matrices de rotación	53
3.2.2. Ángulos de Euler	57
3.2.3. Par de rotación	
3.2.4. Cuaternios	61
3.3. Matrices de transformación homogénea	
3.3.1. Coordenadas y matrices homogéneas	62
3.3.2. aplicación de las matrices homogéneas	63
3.3.3. Significado geométrico de las matrices homogéneas	74
3.3.4. Composición de matrices homogéneas	76
3.3.5. Gráficos de transformación	80

3.4. Aplicación de los cuaternios	
3.4.1. Algebra de cuaternios	81
3.4.2. Utilización de los cuaternios	83
3.5. Relación y comparación entre los distintos métodos de localización	
espacial	84
3.5.1. Comparación de métodos de localización espacial	85
3.5.2. Relación entre los distintos métodos de localización espacial	86
3.6. Bibliografía	92
Capítulo 4. Cinemática del robot	93
4.1. El problema cinemático directo	
4.1.1. Resolución del problema cinemático directo mediante matrices de	94
transformación homogénea	
4.1.2. Algoritmo de Denavit-Hartenberg para la obtención del modelo	
cinemático directo	97
4.1.3. Resolución del problema cinemático directo mediante el uso de	
cuaternios	103
4.2. Cinemática inversa	108
4.2.1. Resolución del problema cinemático inverso por métodos	
geométricos	110
4.2.2. Resolución del problema cinemático inverso a partir de la matriz de	
transformación homogénea	112
4.2.3. Desacoplo cinemático	118
4.3. Matriz Jacobiana	
4.3.1. Relaciones diferenciales	122
4.3.2. Jacobiana inversa	124
4.3.3 Configuraciones singulares	126
4.4. Bibliografía	129
Capítulo 5. Dinámica del robot	131
5.1. Modelo dinámico de la estructura mecánica de un robot rígido	132
5.2. Obtención del modelo dinámico de un robot mediante la formulación de	
Lagrange-Euler	135
5.2.1. Algoritmo computacional para el modelado dinámico por Lagrange-	
Euler	136
5.3. Obtención del modelo dinámico de un robot mediante la formulación de	
Newton-Euler	148
5.3.1. Algoritmo computacional para el modelado dinámico por Newton-	
Euler	
5.4. Modelo dinámico en variables de estado	155
5.5. Modelo dinámico en el espacio de la tarea	159
5.6. Modelo dinámico de los actuadores	160
5.6.1. Motor eléctrico de corriente continua	161
5.6.2. Motor hidráulico con servoválvula	164
5.7. Bibliografía	167
Capítulo 6. Control cinemático	
6.1. Funciones del control cinemático	169

6.2. Tipos de trayectorias	
6.2.1. Trayectorias punto a punto	172
6.2.2. Trayectorias coordinadas	
6.2.3. Trayectorias continuas	173
6.3. Generación de trayectorias cartesianas	
6.3.1. Evolución de la orientación	175
6.4. Interpolación de trayectorias	177
6.4.1. Interpoladores lineales	
6.4.2. Interpoladores cúbicos	178
6.4.3. Interpoladores a tramos	181
6.4.4. Otros interpoladores	
6.5. Muestreo de trayectorias cartesianas	184
6.6. Bibliografía	185
Capítulo 7. Control dinámico	187
7.1. Control monoarticular	
7.1.1. Influencia del factor de reducción	188
7.1.2. Control PID	193
7.1.3. Control PID con prealimentación	197
7.1.4. Control PID con compensación de gravedad	198
7.2. Control multiarticular	
7.2.1. Desacoplamiento por inversión del modelo	200
7.2.2 Control PID con prealimentación	202
7.3. Control adaptativo	204
7.3.1. Control adaptativo por planificación de ganancias (GS)	205
7.3.2. Control adaptativo con modelo de referencia (MRAC)	207
7.3.3. Control de par calculado adaptativo	208
7.4. Aspectos prácticos de la implantación del regulador	
7.4.1. Ajuste de los parámetros del PID. Especificaciones de diseño	210
7.4.2. Saturación de los amplificadores. Efecto de la acción integral	212
7.4.3. Flexión y oscilaciones estructurales	216
7.5. Bibliografía	218
Capítulo 8. Programacion de robots	219
8.1. Métodos de programación de robots. Clasificación	
8.1.1. Programacion por ángulo	220
8.1.2. Programacion textual	223
8.2. Requerimientos de un sistema de programación de robots	225
8.2.1. Entorno de programación	
8.2.2. Modelado del entorno	226
8.2.3. Tipos de datos	227
8.2.4. Manejo de entradas-salidas	228
8.2.5. Control del movimiento del robot	229
8.2.6. Control del flujo de ejecución del programa	230
8.3. Ejemplo de programación de un robot industrial	231
8.4. Características básicas de los lenguajes RAPID y V+	
8.4.1. El lenguaje de programación RAPID	236

8.4.2. El lenguaje de programación V+	246
8.5. Bibliografía	253
Capítulo 9. Criterios de implantación de un robot industrial	255
9.1. Diseño y control de una célula robotizada	256
9.1.1. Disposición del robot en la célula de trabajo	257
9.1.2. Características del sistema de control de la célula de trabajo	261
9.2. Características a considerar en la selección de un robot	262
9.2.1. Área de trabajo	263
9.2.2. Grados de libertad	265
9.2.3. Precisión, Repetibilidad y resolución	266
9.2.4. Velocidad	267
9.2.5. Capacidad de carga	
9.2.6. Sistema de control	268
9.3. Seguridad en instalaciones robotizadas	
9.3.1. Causas de acciones	271
9.3.2. Medidas de seguridad	272
9.3.3. Normativa legal	276
9.4. Justificación económica	277
9.4.1. Factores económicos y datos básicos necesarios	278
9.4.2. El robot como elemento principal del análisis economico	279
9.4.3. Métodos de análisis economico	280
9.5. Mercado de robots	285
9.6. Bibliografía	288
Capítulo 10. Aplicaciones de los robots	291
10.1. Clasificaciones	292
10.2. Aplicaciones industriales de los robots	
10.2.1 Trabajos en fundición	293
10.2.2. Soldadura	294
10.2.3. Aplicación de materiales. Pintura	297
10.2.4. Aplicación de adhesivos y sellantes	
10.2.5. Alimentación de maquinas	299
10.2.6. Procesado	301
10.2.7. Corte	302
10.2.8. Montaje	304
10.2.9. Paletización	305
10.2.10. Control de calidad	307
10.2.11. Manipulación en salas blancas	308
10.3. Nuevos sectores de aplicación de los robots. Robots de servicio	311
10.3.1. Industria nuclear	312
10.3.2. Medicina	313
10.3.3. Construcción	314
10.4. Bibliografía	316