Contents

PREFACE, ix

1 CONTROL SYSTEMS ENGINEERING, 1

- 1.1 Introduction, 1
- 1.2 Systems, System Models, and Control Techniques, 1
- 1.3 A Brief History, 2
- 1.4 The Classification of Control Techniques, 7
- 1.5 The Design Process, 10 References, 12

2 MODELING PHYSICAL SYSTEMS: DIFFERENTIAL EQUATION MODELS, 13

- 2.1 Introduction, 13
- 2.2 Linear System Characteristics, 13
- 2.3 Modeling with Lumped Linear Elements, 15
- 2.4 An Automotive Application, 26
- 2.5 Power and Energy Considerations, 27
- 2.6 Nonlinear Models, 30
- 2.7 Summary, 34
- 2.8 Connections to Further Study, 35References, 36Problems, 36

iii

3 TRANSFER-FUNCTION MODELS, 43

- 3.1 Introduction, 43
- 3.2 Using Laplace Transforms, 44
- 3.3 Transfer Functions and Block Diagrams, 50
- 3.4 Using Signal-Flow Graphs, 56
- 3.5 Some Subsystem Models, 60
- 3.6 Control System Applications, 68
- 3.7 Order Reduction, 71
- 3.8 Modeling using MATLAB, 72
- 3.9 Modeling using SIMULINK, 75
- 3.10 Summary, 77
- 3.11 Connections to Further Study, 78
 References, 78
 Problems, 79

4 STATE MODELS, 85

- 4.1 Introduction, 85
- 4.2 Linear System Models, 86
- 4.3 Characteristics of Linear System Solutions, 92
- 4.4 State Diagrams, 95
- 4.5 Conversions between Transfer-Function and State Models, 97
- 4.6 Nonlinear Models, 103
- 4.7 Block Diagrams Composed of State Models, 104
- 4.8 Managing State Models with MATLAB or SIMULINK, 105
- 4.9 Summary, 107
- 4.10 Connections to Further Study, 108
 References, 108
 Problems, 108

5 SIMULATION, 113

- 5.1 Introduction, 113
- 5.2 Analog Simulation as an Academic Tool, 114
- 5.3 Digital Simulation with Linear System Models, 119
- 5.4 Nonlinear System Simulation, 126
- 5.5 Simulation Using MATLAB, 127

Contents

5 6	A Common	Creatain	A12	100
5.6	A Control	System	Application.	129

- 5.7 Simulation using SIMULINK, 133
- 5.8 Summary, 136
- 5.9 Connections to Further Study, 137References, 138Problems, 138

6 STABILITY, 143

- 6.1 Introduction, 143
- 6.2 Stability Criteria as Applied to Transfer-Function Models, 144
- 6.3 Stability Criteria as Applied to Linear State Models, 147
- 6.4 Stability Tests, 148
- 6.5 Using MATLAB, 153
- 6.6 Summary, 153
- 6.7 Connections to Further Study, 154References, 154Problems, 155

7 PERFORMANCE CRITERIA AND SOME EFFECTS OF FEEDBACK, 157

- 7.1 Introduction, 157
- 7.2 Transient Performance Criteria, 158
- 7.3 Frequency-Response Criteria, 169
- 7.4 Spectral Selectivity and Noise Bandwidth, 176
- 7.5 Steady-State Error, 180
- 7.6 Disturbance Rejection, 193
- 7.7 Sensitivity, 195
- 7.8 Summary, 199
- 7.9 Connections to Further Study, 200References, 201Problems, 201

8 ROOT-LOCUS TECHNIQUES, 207

- 8.1 Introduction, 207
- 8.2 Some Developmental Concepts, 208
- 8.3 The Rules of Construction, 213

9

10

Problems, 307

8.4	Examples, 221			
8.5	Root-Locus Variations, 223			
8.6	Root-Locus Construction using MATLAB, 225			
8.7	A Design Example, 227			
8.8	Summary, 232			
8.9	Connections to Further Study, 233			
	References, 234			
	Problems, 234			
FREC	QUENCY-RESPONSE TECHNIQUES, 237			
9.1	Introduction, 237			
9.2	Phasor-Algebra Models and Graphical Variations, 237			
9.3	Bode Plots and Relative Stability Criteria, 239			
9.4	Polar Plots and the Nyquist Stability Criterion, 248			
9.5	The Correlation of Open-Loop and Closed-Loop Charac	eteristics, 255		
9.6	An Application: Systems With Transportation Delay, 259			
9.7	Frequency-Response Plots using MATLAB, 262			
9.8	Summary, 265			
9.9	Connections to Further Study, 266			
	Problems, 266			
CAS	CADE CONTROLLER DESIGN, 271			
10.1	Introduction, 271			
10.2	The Proportional Controller, 271			
10.3	The PI Controller, 272			
10.4	The Ideal PD Controller, 280			
10.5	The Practical PD Controller, 283			
10.6	The PID Controller, 288			
10.7	The Phase-Lead Controller, 292			
10.8	The Phase-Lag Controller, 296			
10.9	The Lead-Lag Controller, 300			
10.10	Selecting a Cascade Controller, 303	3		
10.11	Using Matlab, 304	- 148 -		
10.12	Summary, 306			
10.13	Connections to Further Study, 307			

Contents vii

11 CONTROLLER DESIGN VARIATIONS, 313

- 11.1 Introduction, 313
- 11.2 Pole Placement Using State Feedback, 313
- 11.3 State-Estimation, 324
- 11.4 Output Feedback, 326
- 11.5 Transfer-Function-Based Pole Placement, 329
- 11.6 Tracking With Feedforward Anticipation, 333
- 11.7 Using MATLAB, 336
- 11.8 Summary, 338 Problems, 339

12 NONLINEAR MODELS AND SIMULATION, 343

- 12.1 Introduction, 343
- 12.2 Linear and Nonlinear System Models: Distinguishing Properties, 344
- 12.3 State Space and the Phase Plane, 345
- 12.4 Simulation with a Saturation Characteristic, 348
- 12.5 Simulation with a Discrete-Level Controller, 352
- 12.6 Simulation with Nonlinear Friction, 365
- 12.7 Summary, 373
- 12.8 Connections to Further Study, 374

References, 374

Problems, 375

13 NONLINEAR SYSTEMS: ANALYTICAL TECHNIQUES, 377

- 13.1 Introduction, 377
- 13.2 Equilibrium States and Nominal Set Points, 377
- 13.3 Linearization, 378
- 13.4 Describing Functions, 382
- 13.5 Summary, 391

References, 392

Problems, 392

viii Contents

14 THE APPLICATION OF DISCRETE-EVENT CONTROL TECHNIQUES, 395

- 14.1 Introduction, 395
- 14.2 State-Transition Techniques, 396
- 14.3 Traditional Control Techniques, 404
- 14.4 Concurrent Control, 408
- 14.5 Hierarchic Control, 411
- 14.6 Summary, 415

15 DESIGN EXAMPLES, 421

- 15.1 Introduction, 421
- 15.2 A Vehicle Cruise Control, 421
- 15.3 A Phase-Locked Motor Speed Control, 425
- 15.4 Control of an Orbiting Satellite, 430
- 15.5 The MATLAB Code, 437 References, 438

APPENDIX A ANGLES AND INTERCEPTS OF ROOT-LOCUS ASYMPTOTES, 439

APPENDIX B MATLAB: INTRODUCTORY INFORMATION, 441

INDEX, 447