INDICE

Prefacio	IX
Capítulo 1. Sismos y Movimientos del terreno	1
1.1. Sismos	1
1.1.1. Causas de los sismos	1
1.1.2. Sismo y ondas sísmicas	6
1.1.3. Escalas e intensidad de los sismos	8
1.1.4. Actividad sísmica	13
1.2. Medición de los sismos	24
1.2.2. Acelerógrafo de movimiento interno	25
1.2.3. Observación en campo de l0os movimientos del terreno	26
1.2.4. Análisis de las ondas sísmicas	27
1.3. Movimiento sísmico	29
1.3.1. Características de amplificación de las capas de la superficie	29
1.3.2. Movimiento sísmico en la superficie del terreno	31
1.3.3. relación entre la naturaleza del terreno y el daño estructural	33
Capitulo 2. Vibración de las Estructuras ante el Movimiento del	36
Terreno	
2.1. Vibración elástica de las estructuras simples	36
2.1.1. Modelado de las estructuras y las ecuaciones del movimiento	36
2.1.2. Vibración libre de las estructuras simples	37
2.1.3. Estado permanente de las vibraciones forzadas	40
2.1.4. Estado no permanente del espectro de respuesta	45
2.2. Vibración elástica de estructuras de múltiples pisos	48
2.2.1. Las ecuaciones del moviendo	48
2.2.2. Periodos y modos de vibración de sistemas estructurales	53
2.2.3. Ortogonalidad de los modelos de vibración	55
2.2.4. Técnica del análisis modal	57
2.3. Vibración de un continuo unidimensional	62
2.3.1. Vibración de las vigas cortante	62
2.3.2. Vibración de las vigas a flexión	65
2.3.3. Propagación de las ondas en un cuerpo unidimensional	67
2.4. Vibración de cabeceo y vibración torsionante	73
2.4.1. Modelado de suelo	73
2.4.2. Periodos y modos de la vibración de cabeceo	75
2.4.3. Vibración de cabeceo ante los movimientos del terreno	78
2.4.4. Periodos y modos de vibración torsionante	78
2.4.5. Vibración torsionante de estructuras en el espacio	80
2.5. Características dinámicas de las estructuras	81
2.5.1. Fuerza de restitución	81
2.5.2. Características del amortiguamiento	84
2.5.3. Cálculo de las características dinámica de estructuras modelo	87
2.5.4. Prueba dinámica de estructuras	90
2.6. Análisis de la respuesta inelástica de estructuras	93
2.6.1. Significado del análisis de la respuesta inelástica	93
2.6.2. Métodos de análisis de la respuesta no lineal	94
2.6.3. Comportamiento de la respuesta inelástica	99
2.7. Medidas de seguridad asísmica	99

2.7.1. Energía suministrada y fuerza de restitución	99
2.7.2. Factores de ductilidad globales y locales	101
2.7.3. Efectos del deterioro	103
2.7.4. Criterios de falla	105
Capitulo 3. Comportamiento de las Estructuras de los Edificios ante	108
las Cargas Sísmicas	
3.1. Introducción	108
3.2. Comportamiento de los materiales de construcción	109
3.2.1. Concreto	109
3.2.2. Acero	111
3.3. Comportamiento de las estructuras de concreto presforzado	112
3.3.1. Introducción	112
3.3.2. Interacción entre el concreto y el acero	114
3.3.3. Comportamiento flexionante y los miembros	117
3.3.4. Comportamiento cortante de los miembros	127
3.3.5. Muros de cortante	134
3.3.6. Conexiones	140
3.3.7. Sistemas	143
3.3.8. Comportamiento de las estructuras de concreto presforzado	146
3.3.9. Daño sísmico	149
3.4. Comportamiento de las estructuras de acero	154
3.4.1. Introducción	154
3.4.2. Pandeo local	154
3.4.3. Vigas	155
3.4.4. Viga – columnas	161
3.4.5. Miembros de arriostramiento	166
3.4.6. Conexiones	169
3.4.7. Sistemas	176
3.4.8. Daño sísmico	180
3.5. Comportamiento de las estructuras compuestas	180
3.5.1. Introducción	180
3.5.2. Miembros de acero revestidos con concreto	183
3.5.3. Tubos de acero rellenos de concreto	189
3.5.4. Vigas compuestas no revestidas	190
3.5.6. Conexiones	191
3.5.7. Sistemas	194
3.5.8. Daño sísmico	195
3.6. Comportamiento de las estructuras de mampostería	195
3.6.1. Introducción	195
3.6.2. Tipos de construcción	198
3.6.3. Comportamiento de los materiales	198
3.6.4. Miembros que fallan por flexión	199
3.6.5. Miembros que fallan por cortante	200
3.6.6. Comportamiento de los sistemas	203
3.6.7. Daño sísmico	205
3.7. Comportamiento de las estructuras de madera	205
3.7.1. Introducción	205
3.7.2. Muros de cortante	206

	1000
3.7.3. Sistemas	208
3.7.4. Daño sísmico	208
Capitulo 4. Diseño Sismorresistente de las Estructuras para Edificios	217
4.1. Enfoques para el diseño	217
4.1.1. Métodos de análisis	217
4.1.2. Selección del análisis	219
4.2. Procedimiento de la fuerza lateral equivalente	220
4.2.1. Cortante sísmico en la base	220
4.2.2. Coeficiente de diseño sísmico	221
4.2.3. Distribución en la dirección vertical de la fuerza sísmica y el	224
cortante horizontal	
4.2.4. Momento de volteo	225
4.2.5. Momento de torsión	226
4.2.6. Carga sísmica vertical y efectos ortogonales	227
4.2.7. Deflexión lateral	228
4.2.8. Efecto P-A	228
4.2.9. Interacción suelo – estructura	229
4.3. Diseño en previsión de sismos	230
4.3.1. Estudio del riesgo sísmico	230
4.3.2. Registros sísmicos para el diseño	230
4.3.3. Factores que afectan las características del acelerograma	230
4.3.4. Acelerograma artificial	235
4.3.5. Mapas de zonificación	236
4.4. Procedimiento para el análisis dinámico	236
4.4.1. Análisis modal	236
4.4.2. Análisis inelástico de la historia en el tiempo	239
4.4.3. Evaluación de los resultados	239
4.5. Planeación asísmica fundamental	240
4.5.1. Selección de materiales y tipos de construcción	241
4.5.2. Forma de la superestructura	244
4.5.3. sistema estructurales y unidades asísmicas	249
4.5.4. Dispositivos para reducir la carga sísmica	254
4.6. Diseño sismorresistente de los componentes y sistemas	257
estructurales	
4.6.2. Estructuras monolíticas de concreto reforzado	258
4.6.3. Estructuras de concreto prefabricado	270
4.6.4. Estructuras de concreto presforzado	274
4.6.5. Estructuras de acero	275
4.6.6. Estructuras compuesta	280
4.6.7. Estructuras de mampostería	283
4.6.8. Estructura de madera	288
4.7. Diseño de elementos no estructurales	289
4.7.1. Introducción	289
4.7.2. Fuerzas dinámicas aplicables a elementos no estructurales	291
4.7.3. Análisis estático equivalente	292
4.7.4. Efectos de interacción de los elementos arquitectónicos no	595
estructurales en los elementos no estructurales	
4.7.5. Efectos de los elementos no estructurales en los sistemas	295

estructurales	
4.7.6. Detalles del diseño para los elementos mecánicos y electrónicos	296
Capitulo 5. Diseño Asísmico de las Cimentaciones	303
5.1. Pruebas para determinar las características del suelo	303
5.1.1. Pruebas de campo	303
5.1.2. Pruebas de laboratorio	304
5.1.3. Módulo de cortante y amortiguamiento de los suelos	304
5.2. Características dinámicas de los suelos	305
5.2.1. Licuación de arenas saturadas	305
5.2.2. Asentamiento de arenas secas	307
5.3. Diseño de cimentaciones	307
5.3.1. Cimentaciones directos	308
5.3.2. Cimentaciones con pilotes	308
Capitulo 6. Evaluación de la Seguridad y Reforzamiento de las	311
Estructuras de Edificios Existentes	
6.1. Evaluación de la seguridad sísmica	311
6.2. Reparación y reforzamiento de edificios existentes	315
Capitulo 7. Lecciones Aprendidas de Sismos Recientes en	322
Hispanoamérica	
7.1. Reflexiones sobre este tema	322
7.2. Chile, el sismo del tres de marzo de 1985	323
7.2.1. Conclusiones preliminares	328
7.3. México, experiencias de los sismos de 1985	330
7.3.1. Introducción	330
7.3.2. Los sismos de septiembre de 1985	332
7.3.3. Procedimiento de evaluación	334
7.3.4. Zonificación del daño	337
7.3.5. Características de las construcciones dañadas	340
7.3.6. Tipos de fallas estructurales	351
7.3.7. Conclusiones preliminares	356
7.4. Conclusiones a partir de los sismos reciente de Chile y México	359
Apéndice	371
Anexo A. Formas para evaluación de daños en edificios	395
Anexo B. Fotografía de modos de falla típica	397
Índice	